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Problem 1 
 
As for any conformal map, it is sufficient to examine the transformation of the boundary of the domain, 
which in this case is the unit circle: 
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So the image of the unit circle is a vertical line Re(z)=1 
 
Since the center of the disk is transformed into z(0)=0, the disk is transformed into half-plane to the left of 
the line Re(z)=1. 
 
Transformation of the square:  z(1) = +,  z(1) = 2/(2) = 1; to get z(±i) set  to ±π/2 in above formula, or 

calculate directly: z(±i)=
2 2 1 2 2
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Angles are preserved, so the curved segments in the image of the square meet at right angles 
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Problem 2 
 

When calculating 
1

1
k

n n




  by integrating 

cos
( )

sink

z
f z

z z

 


 , the only purpose of the numerator is to cancel the 

alternating sign coming from the derivative of  sin z  at the pole z=n. Therefore, we have to get rid of the 

cosine, and integrate 
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  over the same rectangular contour to find 
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Along horizontal segments 1 / |sin(πz)|  1 / |exp(πN)-exp(-πN)|, exponentially decaying as N = | Im z | , 
therefore the integral also approaches zero in this limit. Along the vertical segments z=±(N+1/2)+i y, we have  
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So the integral is bounded by the length of the contour, 2N, times 1/|z|2 ~1/N2, yielding zero in the limit N.  

Thus, the sum of residues is zero: 
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The answer is negative since the first (dominant) term is negative. 

z=x+i N

z=(N+1/2)+i y z=N+1/2+i y

z=x-i N



Problem 3 

 
Solve the following Volterra integral equation.  You may use without derivation the Laplace transform result 
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; denote ( 1)     to simplify algebra. Does solution exist when 1?    
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Since Y(s) is not that messy, partial fractions can be used:
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Problem 4 
 
Use the Fourier transform to write down the solution for the following modification of the heat (or diffusion) 
equation 
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Note: same Green’s function as in the usual diffusion equation, but with the peak moving with velocity ω 

As time evolves, the spread of the Green’s function increases, and its center moves to the right 

The extra term describes the flow of the medium to the right (transport / advection), with velocity ω. 


