Math 756 « Midterm Exam ¢ Victor Matveev
October 21, 2013
Problem 1

As for any conformal map, it is sufficient to examine the transformation of the boundary of the domain,
which in this case is the unit circle:
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So the image of the unit circle is a vertical line Re(z)=1

Since the center of the disk is transformed into z(0)=0, the disk is transformed into half-plane to the left of
the line Re(z)=1.

Transformation of the square: z(1) = +o, z(-1) = -2/(-2) = 1; to get z(z/) set 6 to £11/2 in above formula, or
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Angles are preserved, so the curved segments in the image of the square meet at right angles




Problem 2
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When calculating Z—k by integrating f(z) = ”k—” the only purpose of the numerator is to cancel the
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alternating sign coming from the derivative of sinzz at the pole z=n. Therefore, we have to get rid of the
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Along horizontal segments 1/ |sin(17z)| < 1 / |exp(TTN)-exp(-1TN)|, exponentially decayingas N = | Im z | -,
therefore the integral also approaches zero in this limit. Along the vertical segments z=t(N+1/2)+i y, we have
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So the integral is bounded by the length of the contour, 2N, times 1/|z|> ~1/N?, yielding zero in the limit N—.
Thus, the sum of residues is zero:
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Now let's find the residue at O:
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The answer is negative since the first (dominant) term is negative.



Problem 3

Solve the following Volterra integral equation. You may use without derivation the Laplace transform result
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Since Y(s) is not that messy, partial fractions can be used:
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Problem 4

Use the Fourier transform to write down the solution for the following modification of the heat (or diffusion)
equation
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where the Green's function is
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Note: same Green’s function as in the usual diffusion equation, but with the peak moving with velocity w
As time evolves, the spread of the Green’s function increases, and its center moves to the right

The extra term describes the flow of the medium to the right (transport / advection), with velocity w.



