Problem 1

As for any conformal map, it is sufficient to examine the transformation of the boundary of the domain, which in this case is the unit circle:
$z=\frac{2 \zeta}{\zeta-1} \Rightarrow z\left(e^{i \theta}\right)=2 \frac{\exp (i \theta)}{\exp (i \theta)-1} \cdot \frac{\exp (-i \theta)-1}{\exp (-i \theta)-1}=2 \frac{1-\exp (i \theta)}{2-2 \cos \theta}=\frac{1-\cos \theta-i \sin \theta}{1-\cos \theta}$
$\Rightarrow z=1-i \frac{\sin \theta}{1-\cos \theta} \quad$ Note: we can simplify even further: $z=1-i \frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin ^{2} \frac{\theta}{2}}=1-i \cot \frac{\theta}{2}$
Another method: $\frac{2 \exp (i \theta)}{\exp (i \theta)-1}=\frac{2 \exp (i \theta / 2)}{\exp (i \theta / 2)-\exp (-i \theta / 2)}=\frac{\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}}{i \sin \frac{\theta}{2}}=1-i \cot \frac{\theta}{2}$
So the image of the unit circle is a vertical line $\operatorname{Re}(z)=1$
Since the center of the disk is transformed into $z(0)=0$, the disk is transformed into half-plane to the left of the line $\operatorname{Re}(z)=1$.

Transformation of the square: $z(1)=+\infty, z(-1)=-2 /(-2)=1$; to get $z(\pm i)$ set θ to $\pm \pi / 2$ in above formula, or calculate directly: $z(\pm i)=\frac{ \pm 2 i}{ \pm i-1}=\left(\frac{ \pm 2 i}{ \pm i-1}\right)\left(\frac{\mp i-1}{\mp i-1}\right)=\frac{2 \mp 2 i}{2}=1 \mp i$

Angles are preserved, so the curved segments in the image of the square meet at right angles

Problem 2

When calculating $\sum_{n=1}^{\infty} \frac{1}{n^{k}}$ by integrating $f(z)=\frac{\pi \cos \pi z}{z^{k} \sin \pi z}$, the only purpose of the numerator is to cancel the alternating sign coming from the derivative of $\sin \pi z$ at the pole $z=n$. Therefore, we have to get rid of the cosine, and integrate $f(z)=\frac{\pi}{z^{2} \sin \pi z}$ over the same rectangular contour to find $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$.

Along horizontal segments $1 /|\sin (\pi z)| \leq 1 /|\exp (\pi N)-\exp (-\pi N)|$, exponentially decaying as $N=|\operatorname{lm} z| \rightarrow \infty$, therefore the integral also approaches zero in this limit. Along the vertical segments $z= \pm(N+1 / 2)+i y$, we have

$$
\begin{aligned}
\frac{1}{|\sin \pi z|} & =\frac{1}{|\sin (\pm(N+1 / 2) \pi+i \pi y)|}=\frac{1}{|\sin (\pm(N+1 / 2) \pi) \cosh \pi y+i \cos (\pm(N+1 / 2) \pi) \sinh \pi y|}= \\
& =\frac{1}{|\sin (\pm(N+1 / 2) \pi) \cosh \pi y|}=\frac{1}{\cosh \pi y} \leq 1
\end{aligned}
$$

So the integral is bounded by the length of the contour, $2 N$, times $1 /|z|^{2} \sim 1 / N^{2}$, yielding zero in the limit $N \rightarrow \infty$. Thus, the sum of residues is zero:

$$
\sum_{n=-\infty}^{\infty} \operatorname{Res}\left(f(z), z_{n}=n\right)=\operatorname{Res}(f(z), 0)+2 \sum_{n=1}^{\infty} \operatorname{Res}(f(z), n)=\operatorname{Res}(f(z), 0)+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}=-\frac{\operatorname{Res}(f(z), 0)}{2}
$$

Now let's find the residue at 0 :

$$
\begin{aligned}
& \frac{\pi}{z^{2} \sin \pi z}=\frac{\pi}{z^{2}\left(\pi z-\frac{(\pi z)^{3}}{3!}+O\left(z^{5}\right)\right)}=\frac{1}{z^{3}} \frac{1}{1-\frac{(\pi z)^{2}}{6}+O\left(z^{4}\right)}=\frac{1}{z^{3}}\left(1+\frac{(\pi z)^{2}}{6}+O\left(z^{4}\right)\right)=\frac{1}{z^{3}}+\frac{\pi^{2}}{6} \frac{1}{z}+O(z) \\
& \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}=-\frac{\pi^{2}}{12}
\end{aligned}
$$

The answer is negative since the first (dominant) term is negative.

Problem 3

Solve the following Volterra integral equation. You may use without derivation the Laplace transform result $L[\sin \omega t]=\frac{\omega}{s^{2}+\omega^{2}}$; denote $\gamma=\omega(\omega-1)$ to simplify algebra. Does solution exist when $\omega=+1$?

$$
\begin{gathered}
y(t)=t+\int_{0}^{t} y(t-\tau) \sin \omega \tau d \tau \\
Y(s)=\frac{1}{s^{2}}+Y(s) \frac{\omega}{s^{2}+\omega^{2}} \Rightarrow Y(s)\left[1-\frac{\omega}{s^{2}+\omega^{2}}\right]=\frac{1}{s^{2}} \Rightarrow Y(s) \frac{s^{2}+\overbrace{\omega^{2}-\omega}^{\gamma=\omega(\omega-1)}}{s^{2}+\omega^{2}}=\frac{1}{s^{2}} \Rightarrow Y(s)=\frac{s^{2}+\omega^{2}}{s^{2}\left(s^{2}+\gamma\right)}
\end{gathered}
$$

Since $Y(s)$ is not that messy, partial fractions can be used:
$Y(s)=\frac{s^{2}}{s^{2}\left(s^{2}+\gamma\right)}+\frac{\omega^{2}}{s^{2}\left(s^{2}+\gamma\right)}=\frac{1}{s^{2}+\gamma}+\frac{\omega^{2}}{\gamma}\left[\frac{1}{s^{2}}-\frac{1}{s^{2}+\gamma}\right]=\frac{\omega^{2}}{\gamma} \frac{1}{s^{2}}+\underbrace{\left(1-\frac{\omega^{2}}{\gamma}\right)}_{-\omega / \gamma} \frac{1}{s^{2}+\gamma}=\frac{\omega^{2}}{\gamma} \frac{1}{s^{2}}-\frac{\omega}{\gamma} \frac{1}{s^{2}+\gamma}$

Since $L[\sin \omega t]=\frac{\omega}{s^{2}+\omega^{2}}$, we infer that $L^{-1}\left[\frac{1}{s^{2}+\gamma}\right]=\frac{1}{\sqrt{\gamma}} \sin (\sqrt{\gamma} t)$ therefore:

$$
\Rightarrow \quad y(t)=\frac{\omega^{2}}{\gamma} t-\frac{\omega}{\gamma^{3 / 2}} \sin \sqrt{\gamma} t=\frac{\omega}{\omega-1} t-\frac{1}{\sqrt{\omega(\omega-1)^{3}}} \sin \sqrt{\omega(\omega-1)} t
$$

Singularity $\omega=1$ is removable: $\gamma=0 \Rightarrow Y(s)=\frac{s^{2}+1}{s^{2}\left(s^{2}+0\right)}=\frac{1}{s^{2}}+\frac{1}{s^{4}} \Rightarrow Y(s)=t+\frac{t^{3}}{6}$
$\left(\right.$ Note: for $0<\omega<1$ the above results are still correct, yielding $\left.y(t)=\frac{\omega}{\omega-1} t+\frac{1}{\sqrt{\omega(1-\omega)^{3}}} \sinh \sqrt{\omega(1-\omega)} t\right)$

Problem 4

Use the Fourier transform to write down the solution for the following modification of the heat (or diffusion) equation

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \frac { \partial u } { \partial t } = \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \omega \frac { \partial u } { \partial x } ; - \infty < x < + \infty , \quad t > 0 , } \\
{ u (x , t = 0) = f (x) }
\end{array} \Rightarrow \left\{\begin{array}{l}
\frac{\partial U(k, t)}{\partial t}=\left(-k^{2}-i k \omega\right) U(k, t) \\
U(k, 0)=F(k)
\end{array}\right.\right. \\
& \Rightarrow U(k, t)=F(k) \underbrace{\exp \left(-\left(k^{2}+i k \omega\right) t\right)}_{G(k)} \Rightarrow u(x, t)=\int_{-\infty}^{+\infty} f(x-\xi) g(\xi, t) d \xi
\end{aligned}
$$

where the Green's function is

$$
\begin{aligned}
& g(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \underbrace{\exp \left(-\left(k^{2}+i k \omega\right) t\right)}_{G(k)} \exp (i k x) d k=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \exp \left(-k^{2} t+i k(x-\omega t)\right) d k \\
&=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \exp \left(-t\left[k^{2}+i k \frac{x-\omega t}{t}\right]\right) d k=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \exp \left(-t\left[\left(k+i \frac{x-\omega t}{2 t}\right)^{2}+\left(\frac{x-\omega t}{2 t}\right)^{2}\right]\right) d k \\
&=\frac{\exp \left(-\frac{(x-\omega t)^{2}}{4 t}\right)^{+\infty}}{2 \pi} \int_{-\infty} \exp (-t \underbrace{\left(k+i \frac{x-\omega t}{2 t}\right)^{2}}_{s}) d k=\frac{\exp \left(-\frac{(x-\omega t)^{2}}{4 t}\right)}{2 \pi} \underbrace{+\infty+i \frac{x-\omega t}{2 t}} \underbrace{\sqrt{\frac{\pi}{t}}}_{\int_{-\infty}^{\frac{x-\omega t}{2 t}}} \\
&\left.\Rightarrow g(x, t)=\frac{\exp \left(-\frac{(x-\omega t)^{2}}{4 t}\right)}{\sqrt{4 \pi t}}\right)
\end{aligned}
$$

Note: same Green's function as in the usual diffusion equation, but with the peak moving with velocity ω As time evolves, the spread of the Green's function increases, and its center moves to the right The extra term describes the flow of the medium to the right (transport / advection), with velocity ω.

